算法的时间复杂度是一个函数,它定性描述该算法的运行时间。
这是一个代表算法输入值的字符串的长度的函数。
时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。
使用这种方式时,时间复杂度可被称为是渐近的,亦即考察输入值大小趋近无穷时的情况。
O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。
算法复杂度分为时间复杂度和空间复杂度。其作用: 时间复杂度是指执行算法所需要的计算工作量;而空间复杂度是指执行这个算法所需要的内存空间。(算法的复杂性体运行该算法时的计算机所需资源的多少上,计算机资源最重要的是时间和空间(即寄存器)资源,因此复杂度分为时间和空间复杂度。)
大O描述的是算法的运行时间和输入数据之间的关系。
1. 时间复杂度为O(1):是最低的时空复杂度了,也就是耗时/耗空间与输入数据大小无关,无论输入数据增大多少倍,耗时/耗空间都不变。哈希算法就是典型的O(1)时间复杂度,无论数据规模多大,都可以在一次计算后找到目标(不考虑冲突的话)。
2. 时间复杂度为O(n):代表数据量增大几倍,耗时也增大几倍。
比如常见的遍历算法。再比如时间复杂度O(n^2),就代表数据量增大n倍时,耗时增大n的平方倍,这是比线性更高的时间复杂度。
比如冒泡排序,就是典型的O(n^2)的算法,对n个数排序,需要扫描n×n次。
3. 时间复杂度为O(logn):当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。
二分查找就是O(logn)的算法,每找一次排除一半的可能,256个数据中查找只要找8次就可以找到目标。
指数函数:一般地,y=a^x函数(a为常数且以a>0,a≠1)叫做指数函数。y=a^x表示a的x次方。
对数函数:如果a^x =N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
4. 时间复杂度为O(nlogn):就是n乘以logn,当数据增大256倍时,耗时增大256*8=2048倍。这个复杂度高于线性低于平方。
归并排序就是O(nlogn)的时间复杂度。