Floyd算法求多源最短路径

2021年8月26日 | 分类: 【编程】

参考:https://baike.baidu.com/item/Floyd%E7%AE%97%E6%B3%95/291990

算法过程:

1,从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。

2,对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比已知的路径更短。如果是更新它。

把图用邻接矩阵G表示出来,如果从Vi到Vj有路可达,则G[i][j]=d,d表示该路的长度;否则G[i][j]=无穷大。定义一个矩阵D用来记录所插入点的信息,D[i][j]表示从Vi到Vj需要经过的点,初始化D[i][j]=j。把各个顶点插入图中,比较插点后的距离与原来的距离,G[i][j] = min( G[i][j], G[i][k]+G[k][j] ),如果G[i][j]的值变小,则D[i][j]=k。在G中包含有两点之间最短道路的信息,而在D中则包含了最短通路径的信息。
比如,要寻找从V5到V1的路径。根据D,假如D(5,1)=3则说明从V5到V1经过V3,路径为{V5,V3,V1},如果D(5,3)=3,说明V5与V3直接相连,如果D(3,1)=1,说明V3与V1直接相连。

时间复杂度与空间复杂度

时间复杂度:\(O(n^3)\)
空间复杂度:\(O(n^2)\)

优缺点分析:

Floyd算法适用于APSP(All Pairs Shortest Paths,多源最短路径),是一种动态规划算法,稠密图效果最佳,边权可正可负。此算法简单有效,由于三重循环结构紧凑,对于稠密图,效率要高于执行|V|次Dijkstra算法,也要高于执行|V|次SPFA算法。

优点:容易理解,可以算出任意两个节点之间的最短距离,代码编写简单。
缺点:时间复杂度比较高,不适合计算大量数据。

算法描述:

a) 初始化:D[u,v]=A[u,v]

b) 

For k:=1 to n
For i:=1 to n
For j:=1 to n
If D[i,j]>D[i,k]+D[k,j] Then
D[i,j]:=D[i,k]+D[k,j];

c) 算法结束:D即为所有点对的最短路径矩阵

【代码】

#include<iostream>
#include<vector>
using namespace std;
const int &INF=100000000;
void floyd(vector<vector<int> > &distmap,//可被更新的邻接矩阵,更新后不能确定原有边
           vector<vector<int> > &path)//路径上到达该点的中转点
//福利:这个函数没有用除INF外的任何全局量,可以直接复制!
{
    const int &NODE=distmap.size();//用邻接矩阵的大小传递顶点个数,减少参数传递
    path.assign(NODE,vector<int>(NODE,-1));//初始化路径数组
    for(int k=1; k!=NODE; ++k)//对于每一个中转点
        for(int i=0; i!=NODE; ++i)//枚举源点
            for(int j=0; j!=NODE; ++j)//枚举终点
                if(distmap[i][j]>distmap[i][k]+distmap[k][j])//不满足三角不等式
                {
                    distmap[i][j]=distmap[i][k]+distmap[k][j];//更新
                    path[i][j]=k;//记录路径
                }
}
void print(const int &beg,const int &end,
           const vector<vector<int> > &path)//传引用,避免拷贝,不占用内存空间
           //也可以用栈结构先进后出的特性来代替函数递归
{
    if(path[beg][end]>=0)
    {
        print(beg,path[beg][end],path);
        print(path[beg][end],end,path);
    }
    else cout<<"->"<<end;
}
int main()
{
    int n_num,e_num,beg,end;//含义见下
    cout<<"(不处理负权回路)输入点数、边数:";
    cin>>n_num>>e_num;
    vector<vector<int> > path,
          distmap(n_num,vector<int>(n_num,INF));//默认初始化邻接矩阵
    for(int i=0,p,q; i!=e_num; ++i)
    {
        cout<<"输入第"<<i+1<<"条边的起点、终点、长度(100000000代表无穷大,不联通):";
        cin>>p>>q;
        cin>>distmap[p][q];
    }
    floyd(distmap,path);
    cout<<"计算完毕,可以开始查询,请输入出发点和终点:";
    cin>>beg>>end;
    cout<<"最短距离为"<<distmap[beg][end]<<",打印路径:"<<beg;
    print(beg,end,path);
}